A singularly perturbed linear eigenvalue problem in C1domains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Singularly Perturbed Linear Eigenvalue Problem in C1 Domains

where ν is the outward unit normal vector on ∂Ω; ν exists a.e. for Lipschitz domains. The goal of this paper is to understand the asymptotic behavior of Λ(γ) as γ → ∞ when ∂Ω ∈ C1. Since Λ(γ) → ∞ when γ → ∞, (2) can be viewed as a singularly perturbed linear eigenvalue problem. The asymptotic behavior of Λ(γ) was first studied by Lacey, Ockendon and Sabina in [3], where they investigated some r...

متن کامل

Quasilinear singularly perturbed problem with boundary perturbation.

A class of quasilinear singularly perturbed problems with boundary perturbation is considered. Under suitable conditions, using theory of differential inequalities we studied the asymptotic behavior of the solution for the boundary value problem.

متن کامل

Approximation of singularly perturbed linear hyperbolic systems

This paper is concerned with systems modelled by linear singularly perturbed partial differential equations. More precisely a class of linear systems of conservation laws with a small perturbation parameter is investigated. By setting the perturbation parameter to zero, the full system leads to two subsystems, the reduced system standing for the slow dynamics and the boundary-layer system repre...

متن کامل

Eigenvalue Conditions for Convergence of Singularly Perturbed Matrix Exponential Functions

Abstract. We investigate convergence of sequences of n × n matrix exponential functions t → etA k for t > 0, where Ak → A, Ak is nonsingular and A is nilpotent. Specifically, we address pointwise convergence, almost uniform convergence, and, viewing the exponential as a Schwartz distribution, weak∗ convergence. We show that simple results can be obtained in terms of the eigenvalues of A−1 k alo...

متن کامل

A Uniformly Accurate Collocation Method for a Singularly Perturbed Problem

A semilinear singularly perturbed reaction-diffusion problem is considered and the approximate solution is given in the form of a quadratic polynomial spline. Using the collocation method on a simple piecewise equidistant mesh, an approximation almost second order uniformly accurate in small parameter is obtained. Numerical results are presented in support of this result. AMS Mathematics Subjec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2004

ISSN: 0030-8730

DOI: 10.2140/pjm.2004.214.323